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Abstract. This paper uses the development of multi-agent market models to present a unified approach to
the joint questions of how financial market movements may be simulated, predicted, and hedged against.
We first present the results of agent-based market simulations in which traders equipped with simple
buy/sell strategies and limited information compete in speculatory trading. We examine the effect of
different market clearing mechanisms and show that implementation of a simple Walrasian auction leads
to unstable market dynamics. We then show that a more realistic out-of-equilibrium clearing process leads
to dynamics that closely resemble real financial movements, with fat-tailed price increments, clustered
volatility and high volume autocorrelation. We then show that replacing the ‘synthetic’ price history used
by these simulations with data taken from real financial time-series leads to the remarkable result that the
agents can collectively learn to identify moments in the market where profit is attainable. Hence on real
financial data, the system as a whole can perform better than random. We then employ the formalism of
Bouchaud in conjunction with agent based models to show that in general risk cannot be eliminated from
trading with these models. We also show that, in the presence of transaction costs, the risk of option writing
is greatly increased. This risk, and the costs, can however be reduced through the use of a delta-hedging
strategy with modified, time-dependent volatility structure.

PACS. 01.30.Cc Conference proceedings – 05.45.Tp Time series analysis – 05.65.+b Self-organized systems

1 Introduction

Agent-based models of complex adaptive systems are at-
tracting significant interest across a broad range of dis-
ciplines [1]. An important application receiving much
attention within the physics community, is the study of
fluctuations in financial time-series [2]. Currently many
different agent-based models exist in the ‘econophysics’
literature, each with its own set of implicit assumptions
and interesting properties [3–6]. In general these models
exhibit some of the statistical properties that are reminis-
cent of those observed in real-world financial markets: fat
tailed distributions of returns, clustered volatility and so
on. These models, despite their differences draw on several
of the same key ideas; feedback, frustration, adaptability
and evolution.

The Minority Game (MG) introduced by Challet and
Zhang [7] offers possibly the simplest paradigm for a sys-
tem containing these key features. Unlike the sophisti-
cated model of Lux [3] there is no external noise process
simulating information arrival. Nor is there any element
of agents sharing local information as in the model of Cont
and Bouchaud [4]. The MG simply comprises of an odd
number of agents N choosing repeatedly between the op-
tions of buying (1) and selling (0) a quantity of a risky
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asset. The resource level of this asset is finite and there-
fore the agents will compete to buy low and sell high. This
gives the game its ‘minority’ nature; an excess of buyers
will force the price of the asset up, consequently the mi-
nority of agents who have placed sell orders receive a good
price at the penalty of the majority who end up buying at
an over-inflated price. The MG agents act with inductive
reasoning, using strategies that map the series of recent
(binary) asset price fluctuations to an investment decision
for the next time-step. In an attempt to learn from their
past mistakes the agents constantly update the ‘score’ of
their strategies and use only the most successful one to
make their prediction.

The basic assumptions of this system are minimal but
the resultant dynamics show a richness and diversity that
has been the focus of much recent study . However, the
MG as a realistic market model has many shortcomings:

– All agents trade at each time-step
– All agents trade equal quantities
– The system resource level is fixed
– Agent diversity is typically limited.

Many of these as well as other interesting extensions (such
as agents having the ability to learn of their own market
impact [5]) have been studied separately and are discussed
in [2]. This paper aims to jointly develop many of these
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extensions to the basic MG in an attempt to build a min-
imal and yet realistic market model.

The development and study of market models from a
physicist’s standpoint is motivated by the desire to learn
what key interactions are responsible for phenomena ob-
served in the real-world system, the financial marketplace.
However, the scope for using such market models is not
simply limited to qualitative phenomenological studies.
The models may be extended or manipulated to explore
quantitatively the emergence of empirical scaling laws. Al-
ternatively, the approach to ‘critical’ self-organized, or sta-
ble states may be examined [13]. These are just a few of
the uses which could be categorized as ‘theoretical’ study.
What then can these models be used for on a more ‘prac-
tical’ or perhaps commercial level?

Recently we have been working on the possibility of
using these market models in a similar way to the way
in which a meteorologist may use a model of atmospheric
dynamics; i.e. condition the models with observed data
and let them run into the future to extract probabilistic
forecasts. These forecasts may then be used for not only
speculative gain but also for more insightful risk manage-
ment and portfolio optimization. Section 2 of this text will
expand on the idea of using the MG as a market model,
detailing the extensions needed, Section 3 will then ex-
plore two different market-making mechanisms, assessing
the resultant dynamics, Section 4 will detail how these
models may be used for predictive purposes and Section 5
will focus on risk and portfolio optimization.

2 The MG as a market model

2.1 The basic MG

As mentioned in the previous section, the MG formula-
tion captures some of the behavioral phenomena that are
thought to be of importance in financial markets; those of
competition, frustration, adaptability and evolution. It is
also a ‘minimal‘ system of only few parameters:

N = Number of agents

mi = ‘Memory’ of agent i

si = Number of strategies held by agent i.

The memory of an agent is the number of bits of the
most recent past global history that are used by a strategy
in order to form a prediction. The agents are assigned
their si strategies at the start of the game and are not
allowed to replace them at any point. Each agent uses
the historically most successful of her strategies to form
a prediction, the predictions of all agents are then pooled
and the global history is updated with the prediction of
the minority group.

A single strategy maps each of the 2m possible ‘histo-
ries’ to a prediction. Thus there are 22m different pos-
sible binary strategies. However, many of the strategies
in this space are largely similar to one another (i.e. are
separated by a small Hamming distance). It has been

shown [14] that the principle features of the MG are re-
produced in a smaller Reduced Strategy Space of 2m+1

strategies wherein any two strategies are separated by a
Hamming distance of either 2m or 2m−1 (i.e. are anti-
correlated or un-correlated). If the number of strategies
in play i.e. Ns is greater than 2m+1 then the game is
said to be in the crowded ’ phase, in contrast Ns� 2m+1

represents the dilute phase.
The properties of the crowded and dilute phases of the

game are quite different and could be thought of as rep-
resenting different regimes of a market. In the crowded
phase there will at any one time be a large number of
agents who are using the same (best) strategy and so will
flood into the market as large groups, producing large
swings in supply and demand and a consequently high
volatility. If the memory of the agents is larger such as
to render Ns ∼ 2m+1 then the groups of agents using
the same (best) strategy (crowds) will be smaller. There
will also be groups of agents who are forced to use the
anti-correlated (worst) strategy, these can be thought of
as anti-crowds as they cancel the market action of the
crowds. This cancellation effect causes a reduction in the
market volatility. In the dilute phase it is very unlikely
that any agents will hold the same strategies and so the
market behaves more randomly and can be modelled well
as a group of independent coin-tossers. A theory based
on these crowding effects reproduces quantitative results
for the market volatility in the basic and so called ‘ther-
mal’ MG across the full range of parameters N , m, s.
For more details of this the reader is referred to [12,15].
This ‘Crowd, Anticrowd Theory’ may also be put to use in
the formulation of an entirely analytical set of dynamical
mapping equations that reproduce the MG [16]. These
equations can be analyzed in several interesting limiting
cases to unveil the dynamics underlying microscopic be-
havior in different regimes of the game. They may also be
used in the analysis of approaches to unstable behavior in
these types of games (and possibly the real market itself).
Our preliminary studies have identified that there can be
at least two different ‘types’ of build up to a large move-
ment (or ‘crash’). Further work is currently underway to
investigate the various ‘types’ of crash that can occur

2.2 The grand-canonical MG

In the basic MG agents must either buy or sell at every
time-step. In a real market however, traders are likely to
wait on the sidelines until they are reasonably confident
that they are able to make a profit with their next trade.
They will observe the market passively, mentally updating
their various strategies, until their confidence overcomes
some threshold value – then they will jump in and make
a trade. We now demonstrate an extension to the basic
MG which attempts to incorporate this general behavioral
pattern.

The primitive binary agents of the basic MG keep a
tally of the virtual score rS,i of each of their si strategies,
+1 for a correct prediction and −1 for an incorrect pre-
diction and virtual in the sense that the strategy is scored
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Fig. 1. Mean and standard deviation in the number of active
agents Nactive (game parameters N = 101, m = 2, s = 2,
T = 50).

whether it is played or not. They may also keep a tally of
their own personal prediction success score ri. It is rea-
sonable that each agent i has a finite time horizon Ti over
which these success scores are monitored; this is equivalent
to a ‘sunken losses’ approach. We now make the simplest
possible generalization which is to introduce a threshold
value rmin in either r or rS below which an agent would
choose to not trade. In this case, the agent continues to
update her strategy scores rS but now adds a 0 to her
personal score tally r. With this extension, the number
of agents actively trading at each time-step Nactive will
vary throughout the game. This feature is reminiscent of
the Grand-Canonical-Ensemble in statistical mechanics.

If an agent’s threshold to play lies at the lower end of
the range −T ≤ rmin ≤ T then we would expect the agent
to play a large proportion of the time as her best strat-
egy will have invariably scored higher than this thresh-
old. Conversely, for high rmin, the agent will scarcely
play at all. We would thus expect to see a transition
occur between these two regimes at intermediate values
of the threshold. Figure 1 shows the time-averaged num-
ber of active agents 〈Nactive〉 and the standard deviation
of this quantity as a function of rmin for a uniform pop-
ulation of N = 101 m = 2, s = 2 agents who record
scores over T = 50 time-steps. Here rmin, the threshold
to play, is based on the agent’s strategy score rS,i such
that an agent only plays if max [{rS,i}] > rmin. A similar
transition effect is also seen if the threshold is based on
prediction success score ri.

The behavior of 〈Nactive〉 can be reproduced to a coarse
approximation by assuming that the strategy scores rS,i
undergo independent binomial random walks:

rS ∼ 2Bin
[
T,

1
2

]
− T.

This gives:

〈Nactive〉 ≈ N (1− P [rS < rmin]s)

σ2 [Nactive] ≈ N (1− P [rS < rmin]s)P [rS < rmin]s .

This approximation captures the essence of the transition
mentioned in the paragraph above. However, the behavior
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Fig. 2. Distribution of threshold values rmin after 6000 time-
steps (game parameters N = 151, m = 3, s = 2, T = 50,
λ = 0.07).

of rS is in reality far from that of a random walk. In the
crowded regime rS is strongly mean-reverting and in the
dilute regime of the game it has a strong drift component,
also the increments in individual strategy scores can be
highly correlated. The approximation becomes better for
T � 2m, where many of these effects become averaged
out.

With intermediate values for rmin this modified MG
produces very interesting dynamics [17], for instance there
can be moments of extreme illiquidity followed by a rush
to the market causing huge swings in supply and demand.
There are also noticeable ‘ranging’ and ‘break-out’ periods
and other patterns familiar to market traders [18].

We now extend this model to allow rmin to be dynamic.
Here each agent decides on her own threshold in a manner
dependent on her current internal state variables. This al-
lows an enhanced element of evolution within the model
and more closely resembles behavioral models of mar-
kets wherein levels of confidence are time-dependent. We
choose to make rmin a function of the agent’s personal suc-
cess rate ri. Asserting that agents are rational and risk-
averse implies that rmin > 0 and that drmin,i

dri
≤ 0 i.e. never

play a strategy that has lost more times than won and
take fewer risks if losing. Following basic utility theory
we therefore arrive at: rmin,i = max [0,− (ri − λ.σ [ri])]
(where σ [ri] is the player’s standard deviation of success
and λ is their coefficient of risk-aversion). As agents’ suc-
cess rates vary in time, then so will their threshold values
and we see an overall evolution towards a diverse popula-
tion as shown in Figure 2.

This version of the ‘Grand-Canonical’ MG forms the
basic framework for our development of a market model.
The following subsection will outline the further necessary
extensions to the model that, when combined, form our
‘realistic’ market model.

2.3 Agent diversity and wealth

It is a simple extension of the model developed in the text
above to include agent heterogeneity in terms of wealth,
investment size and investment strategy. As it stands,
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each trade made by an agent is the exchange of one quanta
of a riskless asset for one quanta of a risky one, irrespec-
tive of the agent’s wealth or the price of the asset. Also,
agents always trade as ‘value’ investors, seeking to buy
low and sell high at each time-step. We now generalize
this framework to introduce a more realistic heterogeneity
between investors.

We first allot each agent i a quantity of each asset,
riskless Bi [0] and risky Si [0]. When a trade is made,
it is made at the market price of p [t] ± δ [t] where δ [t]
corresponds to a spread raised by the marketmaker (the
market-making mechanism is the subject of the next sec-
tion). We now re-assert the assumption that investors are
risk-averse and will therefore trade amounts proportional
to their absolute wealth. We also assume that the amount
they trade will be in proportion to their confidence in the
strategy they intend to use. It is helpful at this stage to
define a measure of this confidence ci

ci [t] =
max [rS,i [t]]− rmin [t]

Ti

thus −2 < ci < 1 but the agent only plays if ci > 0. Buy
operations are then represented by:

Bi [t+ 1] = Bi [t]
(

1− ci [t]
p [t+ 1] + δ [t+ 1]

p [t] + δ [t]

)
Si [t+ 1] = Si [t] +

ci [t]Bi [t]
p [t] + δ [t]

and sell operations by:

Bi [t+ 1] = Bi [t] + ci [t]Si [t] (p [t+ 1]− δ [t+ 1])
Si [t+ 1] = Si [t] (1− ci [t]) .

Wealthy agents make large transactions and thus will have
a high market impact (in a system where price movement
size is an increasing function of order size c.f. Eq. (1))
whereas poor agents effectively form a background ‘noise’
of small trades. Of course poor agents may grow rich
or vice-versa. When agents have lost all their assets, they
can no longer trade, this represents the bankruptcy of that
agent. This situation happens extremely rarely in these
models and so we have not sought to implement a sys-
tem for the re-generation of new agents. Figure 3 shows
the average distribution of agents’ wealth as measured by
B [t] + S [t] .p [t] (i.e. the probabilities are averaged over
time).

As well as the diversity in agents’ trade size, there can
also be a diversity in investment strategy. Within the
framework presented here, investment strategies can fall
into the two broad classes; value and trend. A value in-
vestor aims at each time-step to make a profit from buying
low and selling high, a trend investor on the other hand
aims to buy an upward moving asset and sell a downward
mover. A population purely of value investors will have a
minority-game character, a population of trend investors
will create a majority-game of self-fulfilling prophecies. In
general, the population of traders will be a combination
of these types and thus the character of the market (mi-
nority or majority) is unclear. We are currently testing
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how the proportion of each investor type alters the global
dynamics and stability of the market.

3 The market-making mechanism

3.1 Walrasian auction

The simplest type of market-making process is that of a
Walrasian auction. This is a popular model in the eco-
nomics community (and actually the system used in the
London Metals Exchange). In a Walrasian auction in-
vestors take part in a price setting process by submitting
orders to buy or sell the risky asset based on a theoretical
price. The level of this theoretical price is changed until
the supply and demand for the asset exactly match and
the market can be cleared, then the process repeats.

We can use our market model to simulate a simplified
version of this process in the following way. First of all
we assume that the supply and demand are in equilibrium
at each time-step. The resulting equilibrium price for the
risky asset then must be equal to the current demand-
value of stocks sought divided by the number of risky as-
sets offered. This gives:

p[t+ 1] =

∑
i,Buyers

ci [t]Bi [t]∑
i,Sellers

ci [t]Si [t]
·

It is clear then that this process is unstable: if there are no
buyers the price falls to zero and if there are no sellers it
will rise to infinity! Even though these situations happen
rarely in a run of the market model, the resulting dynamics
still show an inherent instability and the fluctuations are
excessive as well as exhibiting a strong anti-persistence.
This situation arises because we are asserting that the buy
and sell pressures are in equilibrium at each time-step. Of
course this is far from the reality and we must extend the
market-making mechanism to accommodate the real out-
of-equilibrium process.
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3.2 Non-equilibrium market

If the supply of risky assets does not exactly match the
demand at each time-step then the market will either not
clear, or the market-maker will take a position in the asset
himself in order to fill the orders. In reality it is most likely
that a combination of these scenarios occurs, the market
maker will want to fill as many orders as possible and
take the spread but he will not allow himself to incur a
large position. There are many ways in which this type
of behavior could be modelled, we limit ourselves here to
looking at one particular system.

Let us start by implementing the price setting rule of
Bouchaud-Cont-Farmer [4,6]:

p [t+ 1] = p [t] e
Buys[t]−Sells[t]

Liquidity (1)

where: Buys
Sells [t] =

∑
i
Buyers
Sellers

Si [t+ 1]− Si [t], and liquidity

is a constant set by the market-maker. This rule prevents
the market-maker being arbitraged but leaves his inven-
tory (BM [t] and SM [t]) as unbounded. Over many runs
of such a market simulation we would expect the market-
maker’s mean inventory to be zero. What we really require
on the other hand is that his mean inventory in a par-
ticular run be zero. We therefore propose the following
extension to equation (1):

p [t+ 1] = p [t] e
Buys[t]−Sells[t]−SM [t]

Liquidity . (2)

This implies that if the market-maker is accruing a net
long position in the risky asset, he’ll start lowering the
price in order to attract buyers into the market and
vice versa. This mechanism works remarkably well and
we find that SM [t] under this new rule is strongly mean-
reverting as shown in Figure 4.

With equation (2) however the market maker can be
arbitraged by the agents; the strategy buy, wait, sell or
vice-versa will make money as long as enough agents do it
at the same time. The agents in these systems learn to ex-
ploit this very quickly (an interesting result in itself) and
the result is a negative drift to the market-maker’s money
BM [t]. There are several mechanisms that the market-
maker may exploit to overcome this; he can raise a spread
or he can reduce the liquidity. We employ the first of
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market simulation (parameters Nvalue = 101, Ntrend = 50, m =
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these mechanisms, updating the spread proportionally to
− 〈BM [t]〉
〈v[t]〉 where v [t] is the volume of transactions defined

as v [t] =
N∑
i=1

Si [t+ 1] − Si [t]. The means 〈BM [t]〉 and

〈v [t]〉 are taken over a time-length TM which is kept large
compared with {Ti} such as to average over local extreme
behavior such as momentary illiquidity. This mechanism
for raising a spread may not be highly efficient but it does
maintain the market-maker’s mean wealth close to the
desired zero point by raising the spread if he starts los-
ing money. The 1/v [t] dependence stabilizes this process
somewhat by sharing the job of paying for the market-
maker’s deficit over the current number of market partic-
ipants.

We now have a complete and arguably ‘realistic’ model
and may begin to investigate its properties. We are at
present looking at how different statistical properties of
the model-market are dependent on its parameters. We
seem to find however that some statistical features are in
general present over very large parameter ranges. These
are the types of feature that are associated with ‘real’
markets: High excess kurtosis of returns with weak decay
over time, volatility clustering, high volume autocorrela-
tion etc. as shown in Figure 5.

4 Prediction from market-models

The market-models introduced in Section 2 consist of a
population of adaptive agents who attempt to predict the
future movement of an asset price. Recently, we have been
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investigating the accuracy of these predictions when the
synthetic self-generated global history of asset movements
is replaced with a real financial time series.

The first step in this process is to generate binary infor-
mation from the given financial time-series. This can be
done in many ways in order to investigate the predictabil-
ity of different aspects of the movement. We choose here
to examine the sign of movements and hence our informa-
tion history h [t] becomes:

h [t] = H [preal [t]− preal [t− 1]]

where H [x] is the Heaviside function. If preal [t] =
preal [t− 1] then we assign h [t] a 0 or 1 randomly. Be-
fore we begin to look at how the agent-models perform
with this new information set, let us first examine some of
its properties. The agents examine chunks of the informa-
tion set h of length m bits in order to make a prediction.
If we look at the occurrence rate of m+1 length bit-strings
we can therefore infer the success rate of strategies. For
example Figure 6 shows the occurrence probability of 4-
bit strings; i.e. 3 memory bits (m = 3) and one prediction
bit. The bit-strings are enumerated by their decimal value
e.g. 0011→ 3. We can infer that the strategy {10101010}
(which is the m = 1, {10} i.e. anti-persistent strategy) will
have the highest success rate as 000 is more often followed
by a 1, 001 by a 0 etc.

As we decrease the sampling rate on our data-set so as
to look at the signs of price increments over longer periods,
we find that the most successful strategy becomes less well
defined and tends to swap regularly. It is no longer the case
that a simple anti-persistent strategy is the best. Also as
we increase the memory m and look at longer bit-strings,
we find that the ‘information content’ of the bit-string
occurrence histograms gets ‘washed away’ in the mixing of
low m probabilities. This implies that the most dominant
physical process is a low m process. Figure 7 shows these
two effects by examining the excess standard deviation of
the bit-string distributions i.e. σreal

Bitstring/σ
random
Bitstring where

σrandom
Bitstring =

√
L(2m+1−1)

2m+1 , where L is the length of the data-
set.

In the agent simulations, h [t] plays the same role as
before, with strategies and agents being scored for predic-
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tion success in the same fashion as detailed in Section 2.
Of course now the feedback has been removed from the
model, it bears more resemblance to a system of genetic
algorithms. The key important difference though is the
fact that this system of independent agents has a large
built in frustration: the agents aren’t allowed to replace
poorly performing strategies. Although this at first ap-
pears to be a handicap, it can in fact be a strength. In
systems where there is not necessarily a ‘correct’ strategy
to employ, there is an advantage in having many currently
non-optimal strategies in play as this gives greater adapt-
ability. We have compared the prediction success of these
types of model with those employing simple Bayesian up-
date of the probability of a given outcome for a given
history and found the former to be much more powerful.
Figure 8 shows the time-series of the $/Yen FX-rate be-
tween 1990-99, below this is a plot of the cumulative non-
compounded profit attained from using the agent model’s
predictions to trade hourly. The trading strategy em-
ployed is simply to put the original investment amount
on either the $ or the Yen side of the market and take it
off again at the end of the hour, banking the profit in a
zero interest account. This is clearly an unrealistic strat-
egy as transaction costs would be penalizing, however it is
used in order to demonstrate simply that the agent-model
performs better than random (around 54% prediction suc-
cess rate) 1. The two profit lines on Figure 8 represent two
different uses of the independent predictions of the agents.
The lower line corresponds to the case where the invest-
ment is split equally between all agents, the upper line is
for the case where the agents’ predictions are pooled to-
gether with a non-linear function. This demonstrates that
the population as a compound entity can perform much
better than the sum of its individual parts. This kind of
phenomena has been termed ‘collective intelligence’ in the
past.

Arguably the most interesting phenomena of models
such as the MG arise from the strong feedback mecha-
nism. In replacing the self-generated h [t] with an external

1 We have run these models with randomly generated infor-
mation histories h [t] and were able to reject the null hypothesis
that the mean prediction success rate with real data was ran-
dom.
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process we disable that feedback. The system is still how-
ever able to function as a weak predictor. It appears that
the prediction success rate can be raised by invoking again
a feedback within the system. It is probable that this feed-
back forces a more efficient learning process to take place.
These effects are the subject of our current studies.

We have hence demonstrated the success of the agent-
based models in direct prediction of the sign of the next
price increment. However, we can also implement the
models in a different way by ‘training’ them on historical
data of a particular asset movement and then using the ar-
tificial market-making process to run the models forward
into the future. If this is done with an ensemble of such
models, each having a different initial allocation of strate-
gies, we can form a distribution of likely future asset price
levels. Typically the resulting distributions are fat tailed
and can have considerable skewness quite in contrary to
more standard economic models. This information can
not only be of use in speculation but also in risk control
and portfolio management.

5 Risk management

5.1 Implied future risk from agent-models

The control of risk in financial investment should be of
equal importance to the realization of profit. Most current
theories of risk control rely on the implicit assumption
that future behavior of the market will be like its past
behavior. This assumption is continually being brought
into question when banks and investors seem to be ‘caught
out’ by events that past distributions seemed to imply

were impossible. There thus may be room here for risk-
control models that rely more on possible emergent future
behavior than on historic data.

Using agent-based models in the way mentioned at the
close of Section 4 gives us distributions for likely future
price levels based on what microscopically might happen.
This may be just the type of forward-casting model that
could be of use here. We must first however develop a
framework within which we can use the type of infor-
mation that these models give us. Much of risk-control
concerns itself with the use of derivative instruments, we
therefore follow this direction but take pause to note that
a similar methodology can be used for analyzing any port-
folio of assets.

Several years ago Bouchaud and Sornette developed a
framework for examining and controlling the risk inher-
ent in writing derivative contracts [19]. This formalism
explicitly deals with future asset movements in a proba-
bilistic, path-dependent fashion i.e. does not rely on any
random-walk model etc. This makes the formalism ideal
for combining with the forward-casting agent-models.

The formalism examines the variation in future wealth
∆WT from holding a certain portfolio, for example short
one euro-call contract of price C0 maturity T and strike
X and long φt [St] hedging assets in the underlying which
is at price St at time t:

∆WT = C0 −max [ST −X, 0] +
T∑
t=0

φt [St] (St+1 − St) .

(3)

The variance of this wealth process (which is used as a
measure of risk) is then found analytically for a general
underlying movement. For our models, this can be done
in a Monte-Carlo fashion using each member of the model
ensemble to generate a ∆WT . Doing this we could also
look at other measures of risk such as VAR etc. This
process generates a more insightful measure of risk based
on likely future microscopic behavior.

The control of this risk is the next issue. Bouchaud
and Sornette’s variance of the wealth process can be min-
imized with respect to the hedging strategy φt [St]. The
full details are given in [20]; the result is a risk-minimizing
‘optimal strategy’ given by:

φt [St] =
∫ ∞
X

(ST − St) 〈δSSt,t→ST ,T 〉
〈δS2

t 〉
P [ST |St] dST .

(4)

Using the forward-casting agent-models we obtain
P [ST |St] (the probability of the underlying moving from
value St to ST ) by counting the number of members of
the (large) model ensemble that cast paths passing near
both these two values (price space S is discretized for this
purpose). Similarly 〈δSSt,t→ST ,T 〉 is found as the mean
increment at time t of paths passing near St and ST ,〈
δS2

t

〉
is simply the mean squared increment at time t

of all paths. The resulting reduction in risk when using
this ‘optimal strategy’ with historical distributions is well
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documented [20]; the effects are similar with the agent-
models future-cast distributions. The important differ-
ence to note is that the risk being minimized is the mi-
croscopically derived future risk rather than a measure
assuming the continuity of past behavior.

5.2 Transaction costs

We now digress slightly and examine the effect of trans-
action costs on the risk control process discussed in the
previous paragraphs. Bouchaud and Sornette’s formalism
is easily couched in discrete time, accounting for the fact
that continuous trading is un-physical due to transaction
cost and brokerage inefficiencies. However, transaction
costs themselves have not explicitly been accounted for in
the wealth process, therefore their effect on risk-control
cannot be gauged. We address this point here by adding
a term to equation (3) in order to include a general trans-
action cost structure.

∆WT → ∆WT +
T∑
t=0

k1

+ (k2 + k3St) |φt [St]− φt−1 [St−1]| .

We now again proceed to find the variance of this wealth
process as a gauge of risk. We find that the approximation
of |φt [St]− φt−1 [St−1]| ≈ ∂φt

∂St
|δSt| holds reasonably well

as the time dependence of φt [St] is weak. This allows us to
formulate an analytical correction term to Bouchaud and
Sornette’s expression for risk (full details will be presented
elsewhere).

R→ R+
T∑
t=1



∫∞
−∞

〈
δS2

t

〉
(k2 + k3St)

2

×
(
∂φt
∂St

)2

P [St|S0] dSt

−
(∫∞
−∞ 〈|δSt|〉 (k2 + k3St)
×∂φt∂St

P [St|S0] dSt

)2

 (5)

+
∑
ti6=tj

∞∫∫
−∞


〈|δSti|〉 〈|δStj |〉

× (k2 + k3Sti) (k2 + k3Stj)
×∂φti∂Sti

∂φtj
∂Stj

P [Sti|S0]
× (P [Stj |Sti]− P [Stj |S0])

 dStidStj .

The first line of equation (5) represents the sum of inde-
pendent transaction costs variances whereas the second
line represents the covariance between transaction costs.
The covariance terms become very large as we execute
more transactions. This non-local behavior leads to a di-
vergence of the risk as we go toward continuous time as
shown in Figure 9. Clearly if we are to minimize risk now
the answer is not to simply re-hedge more often.

The minimization of risk with respect to a choice of
hedging strategy φt [St] is now highly complex and in
general path-dependent as might be expected from equa-
tion (5). However, we may use perturbation theory to
obtain approximate solutions. We find that the risk and
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Fig. 10. Simulated distribution of wealth for portfolio short
one 30-day euro-call, at the money, vol = 7.37 p/day and long
φt [St] of the underlying with transaction costs at k3 = 5%.
φt [St] according to Black-Scholes Delta (top) and with modi-
fied volatility as described in the text (bottom).

transaction costs are reduced greatly using a volatility cor-
rection to equation (4) of the form:〈

δS2
t

〉
→ γ [t]

〈
δS2

t

〉
·

The form of γ [t] as a function of time is amusingly that of
a smile, much like the volatility correction in strike price
to the Black-Scholes delta that is implied by equation (4)
itself. The origins of these two ‘volatility smiles’ are of
course very different. Using this correction, for portfo-
lios where transaction costs are likely to be high, we see
a dramatic reduction in the risk and also in the absolute
transaction costs. Figure 10 demonstrates this for a par-
ticular option.
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6 Conclusion

We have presented here a development from the basic mi-
nority game, to a full market model. We have attempted
to capture the behavioral aspects of market-making and
agent-participation in a thorough and yet simplistic fash-
ion. From this model we have then shown behavior rem-
iniscent of ‘real’ financial asset movements with fat-tailed
distributions of returns, clustered volatility and high vol-
ume autocorrelation.

We then moved on to show how these types of agent-
based models perform in a predictive capacity when we re-
place the self-generated synthetic asset-price history with
a real financial asset movement. We showed that as in-
dependent entities, the agents were able to function in
a manner similar to an inefficient genetic algorithm and
thus exploit the residual information present in the asset
movement’s sign. We then went on to show that when
combined as a population, the agents were able to per-
form as a much stronger predictor, suggesting an element
of collective-intelligence. We then outlined another man-
ner in which ensembles of these models can be used to
forecast future asset-price levels in a probabilistic man-
ner.

Lastly, we showed how output from the agent-models
could be used in a portfolio management setting in order
to measure and control risk. We went on to demonstrate
that the addition of transaction costs to Bouchaud and
Sornette’s formalism for risk management led to a greatly
increased risk for high-frequency trading. We then pre-
sented a volatility correction to the ‘optimal strategy’ that
could be used to reduce this excess risk and also reduce
transaction costs.

Our aim is to develop a general understanding and
framework for investigating and exploiting financial mar-
kets based on microscopic models of agent interactions. It
is hoped that the work presented here represents positive
and significant steps toward this goal.

We thank Mr A. Short for many useful discussions
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